Объясните, как система может играть в шахматы, используя обучение с подкреплением (reinforcement learning)
Обучение с подкреплением подразумевает наличие среды и агента. Агент выполняет определённые действия для достижения конкретной цели. Каждый раз, когда агент совершает действие, приближающее его к цели, он получает вознаграждение. И каждый раз, когда он делает шаг, отдаляющий его от цели, он получает штраф.
В случае с шахматами агент учится, играя в игру. Система делает ход (совершает действие), проверяет, правильный ли это ход (получает обратную связь) и сохраняет результат для следующего шага (обучается). Вознаграждение даётся за каждый хороший ход, а наказание — за каждый плохой.
Объясните, как система может играть в шахматы, используя обучение с подкреплением (reinforcement learning)
Обучение с подкреплением подразумевает наличие среды и агента. Агент выполняет определённые действия для достижения конкретной цели. Каждый раз, когда агент совершает действие, приближающее его к цели, он получает вознаграждение. И каждый раз, когда он делает шаг, отдаляющий его от цели, он получает штраф.
В случае с шахматами агент учится, играя в игру. Система делает ход (совершает действие), проверяет, правильный ли это ход (получает обратную связь) и сохраняет результат для следующего шага (обучается). Вознаграждение даётся за каждый хороший ход, а наказание — за каждый плохой.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Библиотека собеса по Data Science | вопросы с собеседований from nl